Copied to
clipboard

G = C244Q8order 128 = 27

3rd semidirect product of C24 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C244Q8, C25.42C22, C23.337C24, C24.566C23, C22.1462+ 1+4, C2.15D42, C23⋊Q87C2, C23.61(C2×Q8), C243C4.7C2, C22⋊C4.125D4, C23.423(C2×D4), C221(C22⋊Q8), C2.32(D45D4), C23.Q88C2, C23.4Q84C2, (C22×Q8)⋊3C22, (C22×C4).58C23, C23.7Q844C2, C23.8Q837C2, C2.3(C232Q8), C23.303(C4○D4), C22.68(C22×Q8), (C23×C4).350C22, C22.217(C22×D4), C2.C4223C22, C2.14(C22.45C24), (C2×C4⋊C4)⋊17C22, (C2×C4).321(C2×D4), (C2×C22⋊Q8)⋊10C2, C2.16(C2×C22⋊Q8), C22.214(C2×C4○D4), (C22×C22⋊C4).22C2, (C2×C22⋊C4).124C22, SmallGroup(128,1169)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C244Q8
C1C2C22C23C24C23×C4C22×C22⋊C4 — C244Q8
C1C23 — C244Q8
C1C23 — C244Q8
C1C23 — C244Q8

Generators and relations for C244Q8
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=e2, ab=ba, faf-1=ac=ca, eae-1=ad=da, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 820 in 390 conjugacy classes, 124 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, C24, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, C25, C243C4, C23.7Q8, C23.8Q8, C23⋊Q8, C23.Q8, C23.4Q8, C22×C22⋊C4, C2×C22⋊Q8, C244Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, C2×C22⋊Q8, C232Q8, D42, D45D4, C22.45C24, C244Q8

Smallest permutation representation of C244Q8
On 32 points
Generators in S32
(1 3)(2 14)(4 16)(5 7)(6 20)(8 18)(9 24)(10 29)(11 22)(12 31)(13 15)(17 19)(21 26)(23 28)(25 32)(27 30)
(1 13)(2 14)(3 15)(4 16)(5 19)(6 20)(7 17)(8 18)(9 24)(10 21)(11 22)(12 23)(25 32)(26 29)(27 30)(28 31)
(1 5)(2 6)(3 7)(4 8)(9 30)(10 31)(11 32)(12 29)(13 19)(14 20)(15 17)(16 18)(21 28)(22 25)(23 26)(24 27)
(1 15)(2 16)(3 13)(4 14)(5 17)(6 18)(7 19)(8 20)(9 25)(10 26)(11 27)(12 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23 3 21)(2 22 4 24)(5 26 7 28)(6 25 8 27)(9 20 11 18)(10 19 12 17)(13 29 15 31)(14 32 16 30)

G:=sub<Sym(32)| (1,3)(2,14)(4,16)(5,7)(6,20)(8,18)(9,24)(10,29)(11,22)(12,31)(13,15)(17,19)(21,26)(23,28)(25,32)(27,30), (1,13)(2,14)(3,15)(4,16)(5,19)(6,20)(7,17)(8,18)(9,24)(10,21)(11,22)(12,23)(25,32)(26,29)(27,30)(28,31), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,15)(2,16)(3,13)(4,14)(5,17)(6,18)(7,19)(8,20)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,3,21)(2,22,4,24)(5,26,7,28)(6,25,8,27)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30)>;

G:=Group( (1,3)(2,14)(4,16)(5,7)(6,20)(8,18)(9,24)(10,29)(11,22)(12,31)(13,15)(17,19)(21,26)(23,28)(25,32)(27,30), (1,13)(2,14)(3,15)(4,16)(5,19)(6,20)(7,17)(8,18)(9,24)(10,21)(11,22)(12,23)(25,32)(26,29)(27,30)(28,31), (1,5)(2,6)(3,7)(4,8)(9,30)(10,31)(11,32)(12,29)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,15)(2,16)(3,13)(4,14)(5,17)(6,18)(7,19)(8,20)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,3,21)(2,22,4,24)(5,26,7,28)(6,25,8,27)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30) );

G=PermutationGroup([[(1,3),(2,14),(4,16),(5,7),(6,20),(8,18),(9,24),(10,29),(11,22),(12,31),(13,15),(17,19),(21,26),(23,28),(25,32),(27,30)], [(1,13),(2,14),(3,15),(4,16),(5,19),(6,20),(7,17),(8,18),(9,24),(10,21),(11,22),(12,23),(25,32),(26,29),(27,30),(28,31)], [(1,5),(2,6),(3,7),(4,8),(9,30),(10,31),(11,32),(12,29),(13,19),(14,20),(15,17),(16,18),(21,28),(22,25),(23,26),(24,27)], [(1,15),(2,16),(3,13),(4,14),(5,17),(6,18),(7,19),(8,20),(9,25),(10,26),(11,27),(12,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23,3,21),(2,22,4,24),(5,26,7,28),(6,25,8,27),(9,20,11,18),(10,19,12,17),(13,29,15,31),(14,32,16,30)]])

38 conjugacy classes

class 1 2A···2G2H···2O2P2Q4A···4P4Q4R4S4T
order12···22···2224···44444
size11···12···2444···48888

38 irreducible representations

dim1111111112224
type++++++++++-+
imageC1C2C2C2C2C2C2C2C2D4Q8C4○D42+ 1+4
kernelC244Q8C243C4C23.7Q8C23.8Q8C23⋊Q8C23.Q8C23.4Q8C22×C22⋊C4C2×C22⋊Q8C22⋊C4C24C23C22
# reps1124121228482

Matrix representation of C244Q8 in GL6(𝔽5)

400000
010000
001000
000400
000040
000001
,
100000
010000
001000
000400
000040
000001
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
010000
400000
004000
000400
000020
000003
,
300000
020000
000100
001000
000001
000040

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C244Q8 in GAP, Magma, Sage, TeX

C_2^4\rtimes_4Q_8
% in TeX

G:=Group("C2^4:4Q8");
// GroupNames label

G:=SmallGroup(128,1169);
// by ID

G=gap.SmallGroup(128,1169);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,184,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽